
MongoDB 3.4: What’s New
January 2017

A MongoDB White Paper

Table of Contents
1Introduction

2Multimodel Done Right
3Graph Processing
3Faceted Navigation
4Multi-Language Collations
4Aggregation Pipeline Enhancements
4Decimal Data Type
5MongoDB Connector for BI
5MongoDB Connector for Apache Spark

6Mission-Critical Applications
6MongoDB Zones: Sophisticated Data Distribution
8Elastic Scalability
8Tunable Consistency Control
9Expanded Platform Support

10Enterprise-Grade Security

11Modernized Tooling to Ship Applications Faster
11MongoDB Compass
12Operational Management for DevOps Teams

13MongoDB Atlas: VPC Peering

14Conclusion

14We Can Help

Introduction

In the age of digital transformation and disruption, your

ability to thrive depends on how quickly you adapt to a

constantly changing market environment. MongoDB 3.4 is

the latest release of the industry’s fastest growing

database. It offers a major evolution in capabilities and

enhancements that enable you to address emerging

opportunities and use cases:

Multimodel Done Right

• MongoDB 3.4 brings graph processing natively within

the database, enabling efficient traversals across

graphs, trees, and hierarchical data to uncover patterns

and surface previously unidentified connections.

• New faceted navigation allows developers to create

rich, intuitive search and analytics experiences for users.

In addition, local language collations – the rules

governing text comparisons and sorting – are now

available for over 100 different languages and locales,

enabling developers to extend global reach.

• Supporting the growing demand for real-time analytics

against live, operational data, MongoDB enriches the

aggregation pipeline with over 25 enhancements

including new stages, expressions, array manipulation,

and performance optimizations.

• The decimal data type brings new precision to the

processing of financial and scientific data.

• The MongoDB Connector for BI has been

re-engineered to push more SQL computation down

into the database, accelerating time to insight for

complex visualizations generated in industry leading

analytics tools such as Tableau and BusinessObjects.

The MongoDB Connector for Apache Spark has been

updated to support the latest Spark 2.0 release,

enabling data engineers to apply the latest innovations

to sophisticated analytics pipelines.

Mission-Critical Applications

• MongoDB zones allow administrators to precisely

control data placement within distributed clusters.

Shards can be provisioned to to specific geographic

regions for data sovereignty, or to support advanced

deployment patterns such as tiered storage. Zones can

1

https://www.mongodb.com/products/bi-connector
https://www.mongodb.com/products/spark-connector

be configured visually with the MongoDB Ops Manager

and Cloud Manager GUIs, or programmatically via their

rich management APIs.

• Faster auto-balancing of data across nodes coupled

with intra-cluster network compression allows seamless

and elastic database scalability in response to dynamic

application demands.

• New tunable consistency controls allow developers

fine-grained optimization of data access patterns based

on application requirements, including the ability to

configure linearizable reads. MongoDB 3.4 offers

among the strongest data consistency guarantees of

any distributed database.

• Extended platform support means you can now run

MongoDB anywhere – from new generations of

power-efficient servers equipped with ARM processors,

through to commodity x86 CPUs, all the way up to IBM

Power and zSeries platforms.

• Enhanced security protection makes it even easier to

deploy MongoDB into regulated industries and

applications. Building upon existing LDAP

authentication, MongoDB now supports LDAP

authorization, allowing administrators to centrally define

and manage user access control. In addition, new

read-only views make it easy to implement field-level

security through filtering and masking, reducing risks of

data exposure.

• Support for AWS VPC peering has been added to the

MongoDB Atlas hosted database service. Now users

can create an extended, private network that connects

the VPC housing their application servers with the AWS

VPC containing their databases. VPC peering achieves

this connectivity without using public IP addresses, and

without needing to whitelist every client in your

MongoDB Atlas group.

Modernized Tooling

• Compass, the GUI for MongoDB that makes it easy to

explore and manipulate your data, is an incredibly

powerful tool for developers and DBAs. It now includes

full CRUD capabilities to edit documents, the ability to

intuitively create and apply document validation rules,

visual explain plans to explore query performance and

real-time index usage statistics to help optimize

performance.

• Simplified private cloud deployments for database as a

service. MongoDB Ops Manager introduces Server

Pools and native Cloud Foundry integration, making it

easy to provision and manage database resources

within cloud-native infrastructure.

MongoDB 3.4 is Generally Available and ready for

production deployment now. MongoDB Atlas has been

updated simultaneously with MongoDB 3.4 general

availability, allowing you to quickly spin up and evaluate the

new features on offer. To evaluate MongoDB 3.4 in your

own environment, you can get it from the MongoDB

download center. The Major Version Upgrade service from

MongoDB global consulting is designed to accelerate the

transition to the latest version of MongoDB. You will

receive guidance from a consulting engineer on the

necessary steps to upgrade, get a walk through of the

upgrade process and get help on testing the upgraded

application.

Each of the enhancements delivered by MongoDB 3.4 is

covered in more detail through the rest of this whitepaper.

Multimodel Done Right

Rather than the monolithic codebases of the past, today’s

applications are increasingly being decomposed into

loosely coupled suites of microservices, each implementing

specific functionality within an application. Different

services can place very different demands on the database

used – from simple key-value lookups to complex analytics,

aggregations, and graph traversals, through to rich search

queries. Some data may need to be stored only in-memory

for predictable low latency, while other data sets may need

to be encrypted on disk for regulatory compliance. Data

sets may vary from billions of small records, each just

several KBs in size, to the management of large, multi-MB

objects.

To try and tame the complexity that would come from using

a multitude of storage technologies, the industry is moving

towards the concept of “multimodel” databases. Such

designs are based on the premise of presenting multiple

data models within the same platform, thereby serving

2

https://www.mongodb.com/products/ops-manager
https://www.mongodb.com/cloud/cloud-manager
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/products/compass
https://www.mongodb.com/products/ops-manager
https://www.mongodb.com/download-center#community
https://www.mongodb.com/download-center#community
https://www.mongodb.com/products/consulting

diverse application requirements. However, many

self-described multimodel database are little more than a

collection of discrete technologies for data storage, search,

and analytics, each with its own domain specific language,

API and deployment requirements, and working on its own

copy of the data. This approach to multimodel fails to offer

much of an improvement over just running multiple

independent databases, imposing high complexity,

overhead, friction, and cost for developers and operations

teams.

MongoDB takes a different approach:

• MongoDB’s flexible document data model presents a

superset of other database models. It allows data be

represented as simple key-value pairs and flat, table-like

structures, through to rich documents and objects with

deeply nested arrays and sub-documents.

• With an expressive query language, documents can be

queried in many ways – from simple lookups to creating

sophisticated processing pipelines for data analytics

and transformations, through to faceted search, JOINs

and graph traversals.

• With a flexible storage architecture, application owners

can deploy storage engines optimized for different

workload and operational requirements.

MongoDB’s approach to delivering multimodel significantly

reduces developer and operational complexity, compared to

running multiple, separate technologies to satisfy diverse

application requirements. Users can leverage the same

MongoDB query language, data model, scaling, security,

and operational tooling across different applications, all

within a single, integrated database platform.

MongoDB 3.4 introduces new native graph processing,

faceted navigation, multi-language collations, additional

aggregation pipeline operators, a new decimal data type,

along with enhanced connectors for BI and Apache Spark

integration.

Graph Processing

Applications storing data in MongoDB frequently contain

data that represents graph or tree type hierarchies. These

connections can be as simple as a management reporting

chain in a HR application, or as complex as

multi-directional, deeply nested relationships maintained by

social networks, master data management,

recommendation engines, disease taxonomy, fraud

detection, and more. While special purpose graph

databases are effective at storing and querying graph data,

it’s often desirable to store and traverse graph data directly

in MongoDB. Here it can be processed, queried, and

analyzed alongside all other operational data in real time,

without the complexity of duplicating data across two

separate databases.

Graph and hierarchical data is commonly queried to

uncover indirect or transitive relationships. For example, if

company “A” is owned by company “B”, and “B” is owned by

company “C”, then “C” indirectly owns company “A”. Some

relational databases implement recursive Common Table

Expressions (CTEs) to support these types of hierarchical

queries. MongoDB 3.4 offers this functionality via a new

aggregation stage called $graphLookup to recursively

lookup a set of documents with a specific defined

relationship to a starting document. Developers can specify

the maximum depth for the recursion, and apply additional

filters to only search nodes that meet specific query

predicates. $graphLookup can recursively query within a

single collection, or across multiple collections.

Review the documentation to learn more about the

MongoDB $graphLookup operator for graph processing.

Faceted Navigation

Faceting is a popular analytics and search capability that

allows an application to group information into related

categories by applying multiple filters to query results.

Facets allow users to narrow their search results by

selecting a facet value as a filter criteria. Facets also

provide an intuitive interface to exploring a data set, and

allow convenient navigation to data that is of most interest.

A common use of faceting is the navigation of product

catalogs. For example, a travel site can present vacation

options by destination region, trip type (i.e. hotel,

self-catering, beach, ski, city break), price band, season,

and more, enabling users to quickly navigate to relevant

categories. Facets also enable rapid analytics – extending

our travel site example, business analysts can use facets to

quickly compare sales by bucketing the number of trips

sold by region and season.

3

https://docs.mongodb.com/manual/reference/operator/aggregation/graphLookup/#pipe._S_graphLookup

Most databases need to execute multiple GROUP_BY

statements to render facets, resulting in long running

queries and poor user experience. MongoDB 3.4

introduces new aggregation pipeline stages for the

bucketing, grouping and counting of one or more facets in

a single round trip to the database. As a result, developers

can generate richer and intuitive experiences to help users

navigate complex data sets. Review the documentation to

learn more about MongoDB faceted navigation.

Multi-Language Collations

Applications addressing global audiences require handling

content that spans many languages. Each language has

different rules governing the comparison and sorting of

data. In order to create intuitive, localized user experiences,

applications must handle non-English text with the

appropriate rules for that language. For example, French

has detailed rules for sorting names with accents on them.

German phonebooks order words differently than the

German dictionary.

MongoDB 3.4 significantly expands language support

capabilities to allow users to build applications that adhere

to language-specific comparison rules. Support for

collations – the rules governing text comparisons and

sorting – has been added throughout the MongoDB Query

Language and indexes for over 100 different languages

and locales. Each collation can also be further customized

to provide precise control over case sensitivity, numeric

ordering, whitespace handling, and more.

Developers can specify collation for a collection, an index, a

view, or for specific operations that support collation (i.e.

find, aggregate, update). You can learn more about

collation in MongoDB from the documentation.

Aggregation Pipeline Enhancements

MongoDB developers and data engineers rely on the

aggregation pipeline due to its power and flexibility in

enabling sophisticated processing and manipulation

demanded by real-time analytics and data transformations.

MongoDB 3.4 continues to extend the aggregation

pipeline by adding new capabilities within the database

that simplify application-side code, as well as optimizer

enhancements that improve performance.

In addition to the graph and facet features described

earlier, many other expressions are added in MongoDB 3.4.

These expressions address string manipulation, array

handling, type handling, and schema detection and

transformation:

• String handling includes expressions for splitting and

manipulating strings either in bytes or code points (a

code point can represent a single component of the

string, e.g, a character, emoji, or formatting instruction).

• Array expressions allow more sophisticated

manipulation and computations on arrays, including

parallel array processing.

• New expressions allow determining types of fields

• Case/switch expressions for branching

• Support for ISO week expressions

MongoDB 3.4 also brings additional performance

optimizations to the aggregation pipeline. Where possible,

the query optimizer automatically moves the $match stage

earlier in the pipeline, and combines it with other stages, to

increase cases where indexes can be used to filter results

sets. In most cases, no modifications of existing queries

need to be made.

You can learn more about the many MongoDB 3.4

aggregation pipeline enhancements from the

documentation.

Decimal Data Type

Decimal128 is a 16 byte decimal floating-point number

format. It is intended for calculations on decimal numbers

where high levels of precision are required, such as

financial (i.e. tax calculations, currency conversions) and

scientific computations. Decimal128 supports 34 decimal

digits of significance and an exponent range of −6143 to

+6144.

MongoDB 3.4 adds support for the decimal data type

which represents decimal128 values. Unlike the double

data type, which only stores approximations of decimal

values, the decimal data type stores the exact value. For

example, a decimal type ("9.99") has a precise value of

9.99, while 9.99 represented as a double would have an

actual value of 9.99000000000000021316282072803,

4

https://docs.mongodb.com/master/release-notes/3.4/#new-aggregation-stages-for-faceted-search
https://docs.mongodb.com/master/reference/collation/
https://docs.mongodb.com/manual/aggregation/#aggregation-pipeline
https://docs.mongodb.com/master/release-notes/3.4/#aggregation
https://docs.mongodb.com/master/release-notes/3.4/#aggregation
https://docs.mongodb.com/master/release-notes/3.4/#aggregation

thus creating the potential for rounding errors when it is

used in calculations.

Decimal type values are treated like any other numeric

type, and compare and sort correctly with other types

based on actual numeric value. Operations on decimals are

implemented in accordance with the decimal128 standard,

so a value of 0.10 will retain its trailing zeros while

comparing equal to 0.1, 0.10000 and so on.

Review the documentation to learn more about the new

MongoDB decimal data type.

MongoDB Connector for BI

The MongoDB Connector for BI was introduced in

November 2015. For the first time analysts, data scientists,

and business users were able to seamlessly visualize

semi-structured and unstructured data managed in

MongoDB, alongside traditional data from their SQL

databases, using the same BI tools deployed within millions

of enterprises.

Building on its initial release, the Connector for BI has

been reengineered to improve performance, simplify

installation and configuration, and support Windows.

FigurFigure 1:e 1: Uncover new insights with powerful
visualizations generated from MongoDB

Performance and scalability has been improved by moving

more query execution down to the MongoDB processes

themselves. Queries and complex aggregations are

executed natively within the database, thus reducing

latency and bandwidth consumption. In addition, installation

and authentication has been simplified. Users now

authenticate as an existing user already declared within

MongoDB, no longer needing to create separate username

and password credentials within the connector. Further

enhancing ease of use, the Connector for BI package is

now reduced from four to two components:

• mongodrmongodrdldl This tool connects to MongoDB and

generates a document-relational definition language

(DRDL) file, which maps the fields of a given MongoDB

collection to a relational schema expected by the BI

platform

• mongosqldmongosqld Once installed and run as a daemon,

mongosqld responds to SQL queries from the BI

platform using the ubiquitous MySQL wire protocol

supported by all of the major tools.

The Connector for BI is part of the Advanced Analytics

suite available with MongoDB Enterprise Advanced.

Review the MongoDB Connector for BI documentation to

learn more.

MongoDB Connector for Apache Spark

Following general availability in June 2016, the MongoDB

Connector for Apache Spark has been updated to support

the latest Spark 2.0 release. Spark 2.0 support in the

connector provides access to the new SparkSession entry

point, the unified DataFrame and Dataset API, enhanced

SparkSQL and SparkR functionality, and the experimental

Structured Streaming feature. The connector exposes all of

Spark’s libraries, including Scala, Java, Python, and R.

MongoDB data is materialized as DataFrames and

Datasets for analysis through machine learning, graph,

streaming, and SQL APIs.

Already powering sophisticated analytics at organizations

including China Eastern Airlines, Black Swan, and x.ai, the

MongoDB Connector for Apache Spark takes advantage

of MongoDB’s aggregation framework, rich queries, and

secondary indexes to extract, filter, and process only the

range of data it needs – for example, all customers located

in a specific geography. This is very different from simple

NoSQL datastores that do not offer secondary indexes or

in-database aggregations. In these cases, Spark would

need to extract all data based on a simple primary key,

even if only a subset of that data is useful for the Spark

process. This means more processing overhead, more

5

https://docs.mongodb.com/master/release-notes/3.4/#decimal-type
https://www.mongodb.com/products/bi-connector
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://docs.mongodb.com/bi-connector/master/
https://www.mongodb.com/products/spark-connector
https://www.mongodb.com/products/spark-connector
https://www.mongodb.com/blog/post/mongodb-and-apache-spark-at-china-eastern-airlines

hardware, and longer time-to-insight for data scientists and

engineers.

To maximize performance across large, distributed data

sets, the connector can co-locate Resilient Distributed

Datasets (RDDs) with the source MongoDB node, thereby

minimizing data movement across the cluster and reducing

latency.

You can download the MongoDB Connector for Apache

Spark from GitHub, and sign up for a free Spark course

from MongoDB University.

Mission-Critical Applications

Digital transformation imposes application demands that

cannot be met easily or economically with traditional

relational databases. Organizations are increasingly

choosing non-relational technologies to accommodate a

range of new requirements including the need to support

growth in complex and rapidly changing data,

geographically distributed applications, and agile

development supported by Continuous Integration /

Continuous Delivery (CI/CD) pipelines. Over 50% of the

Fortune 100 are already MongoDB customers, using the

database to modernize existing applications and innovate

with new digital services. MongoDB 3.4 further enhances

the ability of development teams to harness the latest

innovations in database technology for their most

mission-critical applications.

MongoDB Zones: Sophisticated Data
Distribution

MongoDB provides horizontal scale-out for databases by

partitioning data across low cost, commodity hardware

using a technique called sharding. While many NoSQL

databases also offer scale-out designs, MongoDB uniquely

supports multiple sharding policies that give administrators

precise control over how data is distributed across a

cluster. As a result, data can be sharded according to query

patterns or environmental considerations, providing higher

scalability over diverse workloads and deployment

architectures:

• Range SharRange Sharding.ding. Documents are partitioned across

shards according to the shard key value. Documents

with shard key values close to one another are likely to

be co-located on the same shard. This approach is well

suited for applications that need to optimize range

based queries.

• Hash SharHash Sharding.ding. Documents are distributed according

to an MD5 hash of the shard key value. This approach

guarantees a uniform distribution of writes across

shards, but is less optimal for range-based queries.

• Zone SharZone Sharding.ding. Provides the the ability for DBAs and

operations teams to define specific rules governing data

placement in a sharded cluster.

MongoDB zones (superceding tag-aware sharding in

earlier MongoDB releases) allow precise control over

where data is physically stored, accommodating a range of

deployment scenarios – for example by geographic region,

by hardware configuration, or by application feature.

Administrators can continuously refine data placement

rules by modifying shard key ranges, and MongoDB will

automatically migrate the data to its new zone.

FigurFigure 2:e 2: Easy and intuitive configuration of geographically
distributed MongoDB zones via Ops Manager GUI

6

https://github.com/mongodb/mongo-spark
https://github.com/mongodb/mongo-spark
https://university.mongodb.com/courses/M233/about
https://docs.mongodb.com/master/core/zone-sharding/

MongoDB 3.4 adds new helper functions and additional

options in Ops Manager and Cloud Manager to configure

zones – essential for managing large deployments.

The most popular use cases for MongoDB zones include

the following:

Geographically Distributed Clusters

MongoDB 3.4 gives users the ability to create zones in

multiple geographic regions. Each Zone is part of the same,

single cluster and can be queried globally, but data resides

in the correct location based on sovereignty and local

access requirements. By associating data to shards based

on user location, administrators are able to maintain low

latency access.

To illustrate further, an application may have users in North

America, Europe, and China. The application owner can

assign each shard to a zone representing the physical

location (North America, Europe, or China) of that shard's

servers, and then map all documents to the correct zone

based on its region field. Any number of shards can be

associated with each zone, and each zone can be scaled

independently of the others – for instance, accommodating

faster user growth in China than North America.

Learn more by reviewing our tutorial on creating

geographically distributed clusters with MongoDB zones.

Localized Writes in a Distributed Cluster

Zones provide a solution for continuous availability of

insert-only workloads such as the ingestion of sensor data

in IoT applications. Zones can be used to create

configurations specifically for localized writes in a

distributed cluster, ensuring there is always a node

available to accept inserts, even during a data center

failure. As demonstrated in Figure 3, the topology for

distributed local writes will maintain nodes from both

shards in each data center. In case a datacenter is

unavailable, application side logic can automatically modify

the shard key to redirect the write to the alternative data

center.

FigurFigure 3:e 3: Maintaining continuous availability and local
writes with MongoDB zones

Learn more by reviewing our tutorial on configuring

localized writes with MongoDB zones.

Tiered Storage

Different subsets of the database may have different

response time requirements, usually based on access

frequency and age of the data. For example, IoT

applications or social media services handling time-series

data will demand users experience the lowest latency

when accessing the latest data. However aged data sets

that are read less frequently from an “active archive” have

relaxed latency SLAs.

FigurFigure 4:e 4: Implementing tiered storage with MongoDB
zones

Asymmetric hardware configurations within a sharded

cluster can be created and managed with zones. By

implementing a tiered storage pattern:

• The most recent data can be located on the highest

performance hardware with fast CPUs and SSDs

• Aged data can be moved onto slower, but less

expensive hardware based on conventional, high

capacity spinning disks.

7

https://docs.mongodb.com/master/tutorial/sharding-segmenting-data-by-location/
https://docs.mongodb.com/master/tutorial/sharding-segmenting-data-by-location/
https://docs.mongodb.com/master/tutorial/sharding-high-availability-writes/
https://docs.mongodb.com/master/tutorial/sharding-high-availability-writes/

As a result, administrators can optimize the hardware

spread across the two tiers, providing a great user

experience at an optimized cost point. By including a

timestamp in the shard key, the MongoDB cluster balancer

can migrate data based on age from the high performance

tier to the active archive tier. Learn more by reviewing our

tutorial on configuring tiered storage with MongoDB zones.

Application Affinity

Data for a specific application feature or customer can be

associated to specific zones. For instance, a company

offering Software-as-a-Service (SaaS) may assign users

on its free usage tier to shards provisioned onto lower

specified hardware, while paying customers are allocated

to richly configured, premium infrastructure. The SaaS

provider has the flexibility to scale parts of the cluster

differently for free users and paying customers. For

example, the free tier can be provisioned to just several

shards, while paying customers can be assigned to dozens

of shards.

Learn more by reviewing our tutorial on configuring

application affinity with MongoDB Zones.

Elastic Scalability

Many modern workloads have unpredictable performance

and capacity demands. Loads can quickly spike in

response to specific events, and then stabilize to regular

levels. For example, MongoDB is used by some of the

largest online gaming companies in the world. Rave

reviews of newly published titles drive a sudden surge in

usage, which then decline once the initial launch hype has

passed. Time-based promotions also drive regular spikes in

demand for the game, temporarily increasing load on the

platform.

Responding to such dynamic workloads requires elastic

database clusters that allow for capacity to be seamlessly

added and removed on demand. This allows the business

to get the scalability it needs, when it needs it, and can

then reduce resources when demand drops, thus avoiding

over provisioning and containing costs. MongoDB 3.4 adds

a range of enhancements to further support elastic

clusters.

Faster Cluster Balancing & Node
Synchronization

The MongoDB sharded cluster balancer, responsible for

evenly distributing data across the nodes of a cluster, has

been improved, allowing users to scale capacity quickly and

easily with minimal operational overhead.

The balancer process now supports parallel data

migrations. Multiple node pairs can perform balancing

migrations simultaneously, significantly improving balancing

throughput as nodes are added or removed from the

cluster, or as data is redistributed across nodes. An

individual node can be involved in at most one migration at

a time, so the benefits of parallelized balancing will be

observed in clusters with four or more shards. In addition,

with WiredTiger as the default MongoDB storage engine,

balancer throttling that was necessary with the earlier

MMAP engine is now off by default, which dramatically

speeds migrations, by as much as 10x in some

deployments.

Adding new replica set members to a MongoDB cluster

has also been improved with an optimized “initial sync”

process. Initial sync is implemented by copying all data

from an existing replica to the newly added replica member.

Initial sync is typically used when adding nodes to a cluster,

migrating to a new MongoDB storage engine, or restoring

a node that has fallen too far behind the replication

process. MongoDB 3.4 offers the following enhancements

to initial sync:

• Indexes are now created as data is copied, rather than

after copying is complete, therefore reducing IO

overhead and improving overall initial sync times,

especially when synchronizing large data sets between

nodes.

• The initial sync retry logic has been updated to be highly

resistant to transient network issues, which significantly

reduces the need to restart the copying process.

Intra-Cluster Network Compression

As a distributed database, MongoDB relies on efficient

network transport during query routing and inter-node

replication. MongoDB 3.4 introduces a new option to

compress the wire protocol used for intra-cluster

communications. Based on the snappy compression

8

https://docs.mongodb.com/master/tutorial/sharding-tiered-hardware-for-varying-slas/
https://docs.mongodb.com/master/tutorial/sharding-segmenting-shards/
https://docs.mongodb.com/master/tutorial/sharding-segmenting-shards/
https://docs.mongodb.com/manual/core/sharding-balancer-administration/

algorithm, network traffic can be compressed by up to

70%, providing major performance benefits in

bandwidth-constrained environments, and reduced

networking costs. One early access tester was able to

reduce its networking bill by over $20,000 a month after

configuring network compression.

Compressing and decompressing network traffic requires

CPU resources – typically imposing a low single digit

percentage overhead. Compression is ideal for those

environments where performance is bottlenecked by

bandwidth, and sufficient CPU capacity is available.

Tunable Consistency Control for
Application Flexibility

MongoDB is strongly consistent by default, enabling

applications to immediately read what has been written to

the database, thus avoiding the developer complexity

imposed by eventually consistent systems.

Secondary Consistency Control

In some scenarios, it is acceptable to trade consistency

against specific performance goals. Examples include

serving read traffic from replicas in a remote data center to

reduce geographic latency, or distributing reporting queries

across secondary replica set members. With Secondary

Consistency Control, MongoDB 3.4 allows application

owners to dial up or dial down consistency levels, based on

application needs.

Through read preferences, MongoDB gives users control

over how and when to route queries to secondary replica

set members. As secondary replica members replicate the

primary member’s writes asynchronously, each can lag the

primary’s live state by different amounts of time. With

MongoDB 3.4, a request to process a query by a secondary

replica can now be configured to indicate how much lag

the request is willing to accept when choosing which

secondary node to service the query. If there are no nodes

available that satisfy the consistency window, an error is

returned to the application.

Unlike other databases, being able to configure acceptable

data consistency levels within MongoDB allows the user to

improve data quality, while maintaining the ability to scale

read traffic across secondary replicas. Consider a media

company using MongoDB to power a live dashboard

reporting the results of A/B testing against different

headlines and copy. The editorial team may want to ensure

they are reporting against near real-time data that is less

than, for example, 15 seconds old. Secondary Consistency

Control gives them the ability to configure for data

freshness, thus improving accuracy and decision making.

Linearizable Reads

Dialing consistency levels up, MongoDB 3.4 adds a new

readConcern level of “linearizable”. This option confirms the

primary replica is still connected to a quorum (majority) of

replica nodes before returning results to the client. When

used to perform reads against a single document,

linearizable read concern provides two guarantees:

• First, it guarantees that the returned data reflects only

writes that are committed to a majority of nodes in the

replica set, and therefore will not roll back in the future

as a result of a replica set election.

• Second, it guarantees that the read is not stale. This

means that the returned data reflects the last write

operation to the document that successfully replicated

to a majority of nodes. If a new primary replica is elected

and a client writes to a document using that new

primary – and that write propagates to a majority of

nodes – a subsequent read by any client using

linearizable read concern will be guaranteed to reflect

that write or return an error, regardless of which node is

used to service the read.

In order to provide the extra guarantees, using linearizable

read concern level will have a significant impact on read

latency.

With the linearizable read concern, MongoDB offers among

the strongest data consistency guarantees of any modern,

distributed database. You can learn more by reviewing the

linearizable read concern documentation

Expanded Platform Support

As MongoDB adoption accelerates, there has been

growing demand to run the database on a more diverse

range of platforms to support a broader set of use-cases:

9

https://docs.mongodb.com/manual/core/read-preference/
https://docs.mongodb.com/master/release-notes/3.4/#linearizable-read-concern
https://docs.mongodb.com/master/release-notes/3.4/#linearizable-read-concern

• MongoDB 3.4 has been ported to the ARM v8-64 bit

platform, supporting new generations of power-efficient

servers being deployed into ultra-dense data center

racks.

• MongoDB 3.4 has been ported to IBM’s POWER8 and

zSeries platforms, providing a seamless migration for

large enterprises modernizing legacy workloads as part

of digital transformation initiatives. The port is available

for the MongoDB Enterprise Server, available as part of

MongoDB Enterprise Advanced.

All of these new ports are available from the MongoDB

download center

Enterprise-Grade Security for Regulatory
Compliance

With widespread usage across financial services,

healthcare, retail, and government, MongoDB offers some

of the most extensive security controls available in modern

databases. Robust access control, end-to-end encryption,

and auditing for forensic analysis enable organizations to

build regulatory compliant apps. MongoDB 3.4 further

extends security protection with new LDAP authorization

and read-only views.

LDAP Authorization

LDAP is widely used by organizations to standardize and

simplify the way large user populations are managed

across internal systems and applications. In many cases,

LDAP is also used as the centralized authority for user

access control to ensure that internal security policies are

compliant with corporate and regulatory guidelines.

MongoDB 3.4 extends existing support for authenticating

users via LDAP to now include LDAP authorization as well.

This enables existing user privileges stored in the LDAP

server to be mapped to MongoDB roles, without users

having to be recreated in MongoDB itself. When

configured with an LDAP server for authorization,

MongoDB 3.4 will allow user authentication via LDAP,

Active Directory, Kerberos, or X.509 without requiring local

user documents in the $external database. When a user

successfully authenticates, MongoDB will perform a query

against the LDAP server to retrieve all groups the LDAP

user is a member of, and will transform those groups into

their equivalent MongoDB roles.

MongoDB 3.4 now leverages native platform libraries to

integrate with LDAP. This removes the need for the

external sasld dependencies and configuration required in

earlier releases, while also adding support for LDAP when

running MongoDB on Windows. In addition, LDAP

authentication and authorization can now be configured in

Ops Manager, rather than separately via the command line

on each MongoDB node.

The LDAP enhancements in MongoDB 3.4 significantly

reduce administrative overhead and TCO, while allowing

seamless MongoDB integration into centralized enterprise

access management infrastructure. You can learn more

about the LDAP enhancements in MongoDB 3.4 from the

documentation. MongoDB Enterprise Advanced is required

to take advantage of LDAP integration.

Read-Only Views

New in MongoDB 3.4, DBAs can define non-materialized

views that expose only a subset of data from an underlying

collection, i.e. a view that filters out specific fields, such as

Personally Identifiable Information (PII) from sales data or

health records, or filter out entire documents, such as

customers who have opted out of marketing

communications. As a result, risks of data exposure are

dramatically reduced. DBAs can define a view of a

collection that's generated from an aggregation over

another collection(s) or view. Permissions granted against

the view are specified separately from permissions granted

to the underlying collection(s). This capability allows

organizations to more easily meet compliance standards in

regulated industries by restricting access to sensitive data,

without creating the silos that emerge when data has to be

broken apart to reflect different access privileges.

Views can also contain computed fields – for example

summarizing total and average order value per region,

without exposing underlying customer data. All of this can

be done without impacting the structure or content of the

original source collections. Developers and DBAs can

modify the underlying collection’s schema without

impacting applications using the view.

10

https://www.mongodb.com/download-center#enterprise
https://www.mongodb.com/download-center#enterprise
https://docs.mongodb.com/manual/release-notes/3.4/#ldap-enhancements

As views are non-materialized, the view data is generated

dynamically by reading from the underlying collections

when a user queries the view. This reduces data duplication

in the database, and eliminates inconsistencies between

the base data and view.

Views are defined using the standard MongoDB Query

Language and aggregation pipeline. They allow the

inclusion or exclusion of fields, masking of field values,

filtering, schema transformation, grouping, sorting, limiting,

and joining of data using $lookup and $graphLookup to

another collection.

You can learn more about MongoDB read-only views from

the documentation.

Modernized Tooling to Ship
Applications Faster

To preserve existing investments in skills and enterprise

infrastructure standards, MongoDB is provided with the

extensive tooling for data modeling and systems

management expected by DBAs and operations teams.

MongoDB 3.4 includes enhancements to Compass and

Ops Manager, enabling IT teams to ship new applications

faster with less effort and cost, while gaining greater

oversight and control over their entire IT estate.

MongoDB Compass

MongoDB Compass is the easiest way for developers and

DBAs to explore and manage MongoDB data. As the GUI

for MongoDB, Compass enables users to visually explore

their data, and run ad-hoc queries in seconds – all with

zero knowledge of MongoDB's query language.

The latest Compass release expands functionality to allow

users to manipulate documents directly from the GUI,

optimize performance, and create data governance

controls.

Developers and DBAs can interact with and manipulate

MongoDB data from Compass. They can edit, insert, delete,

or clone existing documents to fix data quality or schema

issues in individual documents identified during data

exploration. If a batch of documents need to be updated,

the query string generated by Compass can be used in an

update command within the mongo shell.

Trying to parse text output can significantly increase the

time to resolve query performance issues. Visualization is

core to Compass, and has now been extended to

generating real-time performance statistics, and presenting

indexes and explain plans.

FigurFigure 5:e 5: Real-time performance statistics now available
from MongoDB Compass

• The visualization of the same real-time server statistics

generated by the mongotop and mongostat commands

directly within the Compass GUI allows DBAs to gain

an immediate snapshot of server status and query

performance.

• If performance issues are identified, DBAs can visualize

index coverage, enabling them to determine which

specific fields are indexed, their type, size, and how

often they are used.

• Compass also provides the ability to visualize explain

plans, presenting key information on how a query

performed – for example the number of documents

returned, execution time, index usage, and more. Each

stage of the execution pipeline is represented as a node

in a tree, making it simple to view explain plans from

queries distributed across multiple nodes.

If specific actions, such as adding a new index, need to be

taken, DBAs can use MongoDB’s management tools to

automate index builds across the cluster.

11

https://docs.mongodb.com/master/core/views/#reference-views
https://docs.mongodb.com/master/core/views/#reference-views
https://www.mongodb.com/products/compass
https://docs.mongodb.com/manual/reference/program/mongotop/
https://docs.mongodb.com/manual/reference/program/mongostat/

FigurFigure 6:e 6: MongoDB Compass visual query plan for
performance optimization across distributed clusters

Document validation allows DBAs to enforce data

governance by applying checks on document structure,

data types, data ranges, and the presence of mandatory

fields. Validation rules can now be managed from the

Compass GUI. Rules can be created and modified directly

using a simple point and click interface, and any

documents violating the rules can be clearly presented.

DBAs can then use Compass’s CRUD support to fix data

quality issues in individual documents.

MongoDB Compass is included with both MongoDB

Professional and MongoDB Enterprise Advanced

subscriptions used with your self-managed instances, or

hosted MongoDB Atlas instances. MongoDB Compass is

free to use for evaluation and in development

environments. You can get MongoDB Compass from the

download center, and read about it in the documentation.

Operational Management for DevOps
Teams

Ops Manager is the simplest way to run MongoDB on your

own infrastructure, making it easy for operations teams to

deploy, monitor, backup, and scale MongoDB. Ops

Manager is available as part of MongoDB Enterprise

Advanced, and its capabilities are also available in Cloud

Manager, a tool hosted by MongoDB in the cloud. Ops

Manager and Cloud Manager provide an integrated suite of

applications that manage the complete lifecycle of the

database:

• Automated deployment and management with a single

click and zero-downtime upgrades

• Proactive monitoring providing visibility into the

performance of MongoDB, history, and automated

alerting on 100+ system metrics

• Disaster recovery with continuous, incremental backup

and point-in-time recovery, including the restoration of

complete running clusters from your backup files

Ops Manager has been enhanced as part of the MongoDB

3.4 release, now offering:

• Finer-grained monitoring telemetry

• Configuration of MongoDB zones and LDAP security

• Richer private cloud integration with server pools and

Cloud Foundry

• Encrypted backups

• Support for Amazon S3 as a location for backups

Ops Manager Monitoring

For modern applications and distributed systems, it should

be possible to configure the granularity of telemetry data

collected by system monitoring agents. Finer-grained

telemetry can help administrators more accurately pinpoint

and root-cause specific events, but comes at the cost of

increased data storage overhead. Ops Manager now allows

telemetry data to be collected every 10 seconds, up from

the previous minimum 60 seconds interval. By default,

telemetry data at the 10-second interval is available for 24

hours. 60-second telemetry is retained for 7 days, up from

the previous 48-hour period. These retention policies are

now fully configurable, so administrators can tune the

timelines available for trend analysis, capacity planning, and

troubleshooting.

Generating telemetry views synthesized from hardware and

software statistics helps administrators gain a complete

view of each instance to better monitor and maintain

database health. Ops Manager has always displayed

hardware monitoring telemetry alongside metrics collected

from the database, but required a third party agent to

collect the raw hardware data. The agent increased the

number of system components to manage, and was only

available for Linux hosts. The Ops Manager agent has now

been extended to collect hardware statistics, such as disk

12

https://docs.mongodb.com/manual/core/document-validation/
https://www.mongodb.com/products/mongodb-professional
https://www.mongodb.com/products/mongodb-professional
https://www.mongodb.com/download-center#compass
https://www.mongodb.com/download-center#compass
https://docs.mongodb.com/compass/

utilization and CPU usage, alongside existing MongoDB

telemetry. In addition, platform support has been extended

to include Windows and OS X.

Private Cloud Integration

Many organizations are seeking to replicate benefits of the

public cloud into their own infrastructure through the

build-out of private clouds. A number of organizations are

using MongoDB Enterprise Advanced to deliver an

on-premise Database-as-a-Service (DBaaS). This allows

them to standardize the way in which internal business

units and project teams consume MongoDB, improving

business agility, corporate governance, cost allocation, and

operational efficiency.

Ops Manager now provides the ability to create

pre-provisioned server pools. The Ops Manager agent can

be installed across a fleet of servers (physical hardware,

VMs, AWS instances, etc.) by a configuration management

tool such as Chef, Puppet, or Ansible. The server pool can

then be exposed to internal teams, ready for provisioning

servers into their local groups, either by the programmatic

Ops Manager API or the Ops Manager GUI. When users

request an instance, Ops Manager will remove the server

from the pool, and then provision and configure it into the

local group. It can return the server to the pool when it is

no longer required, all without sysadmin intervention.

Administrators can track when servers are provisioned

from the pool, and receive alerts when available server

resources are running low. Pre-provisioned server pools

allow administrators to create true, on-demand database

resources for private cloud environments. You can learn

more about provisioning with Ops Manager server pools

from the documentation.

Building upon server pools, Ops Manager now offers

certified integration with Cloud Foundry. BOSH, the Cloud

Foundry configuration management tool, can install the

Ops Manager agent onto the server configuration

requested by the user, and then use the Ops Manager API

to build the desired MongoDB configuration. Once the

deployment has reached goal state, Cloud Foundry will

notify the user of the URL of their MongoDB deployment.

From this point, users can log in to Ops Manager to

monitor, back-up, and automate upgrades of their

deployment.

MongoDB Ops Manager is available for evaluation from the

download center.

Amazon S3 Support

Ops Manager can now store backups in the Amazon S3

storage service, with support for deduplication,

compression, and encryption. The addition of S3 provides

administrators with greater choice in selecting the backup

storage architecture that best meets specific organizational

requirements for data protection:

• MongoDB blockstore backups

• Filesystem backups (SAN, NAS, & NFS)

• Amazon S3 backups

Whichever architecture is chosen, administrators gain all of

the benefits of Ops Manager, including point-in-time

recovery of replica sets, cluster-wide snapshots of sharded

databases, and data encryption.

You can learn more about Ops Manager backups from the

documentation.

MongoDB Atlas: VPC Peering

Since launching the MongoDB Atlas database service in

June 2016, over 2,000 clusters have already been

deployed. Today MongoDB Atlas is providing production

services to diverse organizations and applications across

the globe, including media broadcasters, gaming platforms,

social media analytics, financial services, logistics, scientific

research, and universities. MongoDB Atlas provides the

features of MongoDB, without the operational heavy lifting

required for any new application. MongoDB Atlas is

available on-demand through a pay-as-you-go model and

billed on an hourly basis, letting developers focus on apps,

rather than ops.

MongoDB Atlas offers the latest 3.4 release (community

edition) as an option. In addition, MongoDB Atlas also now

offers AWS Virtual Private Cloud (VPC) peering. Each

MongoDB Atlas group is provisioned into its own AWS

VPC, thus isolating the customer’s data and underlying

systems from other MongoDB Atlas users. With the

addition of VPC peering, customers can now connect their

13

https://docs.opsmanager.mongodb.com/current/tutorial/server-pool/
https://www.mongodb.com/download-center#ops-manager
https://docs.opsmanager.mongodb.com/current/tutorial/nav/backup-use/
https://docs.opsmanager.mongodb.com/current/tutorial/nav/backup-use/
https://www.mongodb.com/atlas
https://docs.atlas.mongodb.com/setup-cluster-security/#vpc-peering-connection
https://docs.atlas.mongodb.com/setup-cluster-security/#vpc-peering-connection

application servers deployed to another AWS VPC directly

to their MongoDB Atlas cluster using private IP addresses.

Whitelisting public IP addresses is not required for servers

accessing MongoDB Atlas from a peered VPC. Services

such as AWS Elastic Beanstalk or AWS Lambda that use

non-deterministic IP addresses can also be connected to

MongoDB Atlas without having to open up wide public IP

ranges that could compromise security. VPC peering allows

users to create an extended, private network connecting

their application servers and backend databases.

You can learn more about MongoDB Atlas from the

documentation.

Conclusion

MongoDB 3.4 is a significant evolution of the industry’s

fastest growing database:

• Native graph processing, faceted navigation, richer

real-time analytics, and powerful connectors for BI and

Spark integration bring additional multimodel database

support right into MongoDB.

• Geo-distributed MongoDB zones, elastic clustering,

tunable consistency, and enhanced security controls

bring state-of-the-art database technology to your most

mission-critical applications.

• Enhanced DBA and DevOps tooling for schema

management, fine-grained monitoring, and cloud-native

integration allow engineering teams to ship applications

faster, with less overhead and higher quality.

To get started today:

• Download MongoDB 3.4

• Alternatively, spin up your own MongoDB 3.4 cluster on

the MongoDB Atlas database service

• Sign up for our free 3.4 training from the MongoDB

University

We Can Help

We are the MongoDB experts. Over 2,000 organizations

rely on our commercial products, including startups and

more than a half of the Fortune 100. We offer software and

services to make your life easier:

MongoDB Enterprise Advanced is the best way to run

MongoDB in your data center. It's a finely-tuned package

of advanced software, support, certifications, and other

services designed for the way you do business.

MongoDB Atlas is a database as a service for MongoDB,

letting you focus on apps instead of ops. With MongoDB

Atlas, you only pay for what you use with a convenient

hourly billing model. With the click of a button, you can

scale up and down when you need to, with no downtime,

full security, and high performance.

MongoDB Cloud Manager is a cloud-based tool that helps

you manage MongoDB on your own infrastructure. With

automated provisioning, fine-grained monitoring, and

continuous backups, you get a full management suite that

reduces operational overhead, while maintaining full control

over your databases.

MongoDB Professional helps you manage your

deployment and keep it running smoothly. It includes

support from MongoDB engineers, as well as access to

MongoDB Cloud Manager.

Development Support helps you get up and running quickly.

It gives you a complete package of software and services

for the early stages of your project.

MongoDB Consulting packages get you to production

faster, help you tune performance in production, help you

scale, and free you up to focus on your next release.

MongoDB Training helps you become a MongoDB expert,

from design to operating mission-critical systems at scale.

Whether you're a developer, DBA, or architect, we can

make you better at MongoDB.

14

https://docs.atlas.mongodb.com/
https://docs.atlas.mongodb.com/
https://www.mongodb.com/download-center#enterprise
https://www.mongodb.com/atlas
https://university.mongodb.com/courses/M034/about
https://university.mongodb.com/courses/M034/about
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/products/cloud-manager
https://www.mongodb.com/products/mongodb-professional
https://www.mongodb.com/products/development-support
https://www.mongodb.com/products/consulting
https://university.mongodb.com/private_training

Resources

For more information, please visit mongodb.com or contact

us at sales@mongodb.com.

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Enterprise Download (mongodb.com/download)

MongoDB Atlas database as a service for MongoDB

(mongodb.com/cloud)

New York • Palo Alto • Washington, D.C. • London • Dublin • Barcelona • Sydney • Tel Aviv
US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com
© 2017 MongoDB, Inc. All rights reserved.

15

http://www.mongodb.com
mailto:sales@mongodb.com
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/download
https://www.mongodb.com/cloud

	Table of Contents
	Introduction1
	Multimodel Done Right2
	Graph Processing3
	Faceted Navigation3
	Multi-Language Collations4
	Aggregation Pipeline Enhancements4
	Decimal Data Type4
	MongoDB Connector for BI5
	MongoDB Connector for Apache Spark5

	Mission-Critical Applications6
	MongoDB Zones: Sophisticated Data Distribution6
	Elastic Scalability8
	Tunable Consistency Control8
	Expanded Platform Support9
	Enterprise-Grade Security10

	Modernized Tooling to Ship Applications Faster11
	MongoDB Compass11
	Operational Management for DevOps Teams12

	MongoDB Atlas: VPC Peering13
	Conclusion14
	We Can Help14
	Introduction
	Multimodel Done Right
	Mission-Critical Applications
	Modernized Tooling

	Multimodel Done Right
	Graph Processing
	Faceted Navigation
	Multi-Language Collations
	Aggregation Pipeline Enhancements
	Decimal Data Type
	MongoDB Connector for BI
	MongoDB Connector for Apache Spark

	Mission-Critical Applications
	MongoDB Zones: Sophisticated Data Distribution
	Geographically Distributed Clusters
	Localized Writes in a Distributed Cluster
	Tiered Storage
	Application Affinity

	Elastic Scalability
	Faster Cluster Balancing & Node Synchronization
	Intra-Cluster Network Compression

	Tunable Consistency Control for Application Flexibility
	Secondary Consistency Control
	Linearizable Reads

	Expanded Platform Support
	Enterprise-Grade Security for Regulatory Compliance
	LDAP Authorization
	Read-Only Views

	Modernized Tooling to Ship Applications Faster
	MongoDB Compass
	Operational Management for DevOps Teams
	Ops Manager Monitoring
	Private Cloud Integration
	Amazon S3 Support

	MongoDB Atlas: VPC Peering
	Conclusion
	We Can Help
	Resources

